Posts Tagged ‘Tips and Tricks’

Available Tables in SOLIDWORKS Drawings

Friday, February 13th, 2015

I get asked about the different tables in SOLIDWORKS drawings.  I’ll go over some of these as a high level overview.  This will cover BOM, Hole Table, Revision Tables, Weldment Cut List Tables, General Table, Weld Table, Bend Table, and Punch Tables.

Closed Table Rendered in SOLIDWORKS Drawings
BOM

The Bill of Materials is a list of the components and the quantities of each needed to manufacture the end product.  This can be customized a lot to be able to show different properties, different fonts, etc.

Bill Of Materials in SOLIDWORKS Drawing

Bill Of Materials

Once you would get it looking like you want, you would want to save it out as a template so you can easily get back to same style.  If you Right Mouse Click on the table you will get the option to save it.  You can then specify it as a Template and place it with your other ones.  The next time you start a BOM, you will want to choose the one you just saved out and the columns and font will be the same.
Save as template in SOLIDWORKS Drawing
When you RMC, you will notice you can save the BOM as an excel file.  Now with it in excel, you can import it to an ERP/MRP system.

Hole Table

This is used to automatically generate hole information in a tabular format.  The table will show the location and hole size from a specified origin.

Hole Table in SOLIDWORKS Drawing

Hole Table

You also have the ability to customize it with a specific font and size.  You can also add tolerances for the locations and the hole sizes.

Revision Tables

This type of table is used to represent the latest revision of the drawing.  You can see the description of the change, the date it occurred, who did it, and the revision symbol in the drawing.

REVISION TABLE in SOLIDWORKS Drawing

REVISION TABLE

The revision table can also update the Revision Block in your title block.

Weldment Cut List Tables

A cut list is similar to a BOM.  This is used with the weldment function to represent the cut lengths for structural shapes.

CUT LIST in SOLIDWORKS Drawing

Weldment Cutlist

The cut list can again be customized like the BOM to show what is important for final manufacturing.  It has the same ability to be saved as a template and excel file.  This is only active when you have a part file that is a weldment.

General Table

This would be used when you need to type in data in the cells rather than having the software automatically generate the data.  You have the same ability as other tables.  You can split, merge, sort, save, etc this table just like the other types.

Weld Table

The weld table is a summary of weld specifications.  It will represent weld quantity, size, symbol, length, and other custom bead properties.

WELD TABLE SOLIDWORKS Drawing

Weld Table

The table will get the data from the drawing view.  If you add the weld beads to the model, it will automatically fill the table out.  If you are only placing the weld symbols on the drawing views, there is an option in the property manager to include drawing annotations.

Bend Table

BEND TABLE

Bend Table in SOLIDWORKS Drawing

Bend tables are used with Sheet Metal parts.  In place of having many callout for each bend, you can represent these in a table.  It will specify the bend direction, the angle that it needs to bend to, and the radius of the bend.

Punch Table

PUNCH TABLE

Punch Table in SOLIDWORKS Drawings

Punch tables are also used with Sheet Metal parts.  This is very similar to hole tables but in place of holes, it is used with form features.  The table will represent the location of the punch on the flat pattern, the punch ID, the quantity, and the angle between the X-axis and the tool.

Thank You

This was just a high level overview of SOLIDWORKS tables.  If you have any specific questions about them, don’t hesitate to contact us.

Josh Spencer

Elite Application Engineer, CSWE 3DVision Technologies

Rotating Mesh Region SOLIDWORKS FLOW SIMULATION

Friday, January 30th, 2015

The SOLIDWORKS Flow Simulation team has added powerful new functionality to their arsenal,  Rotating Mesh Regions.  Rotating mesh regions or “sliding mesh regions” allow the user to rotate geometry in the model and drive the fluid of the system.  If you are designing any device that utilizes, impellers, propellers, or other rotational apparatus Flow Simulation can provide results such as flow rate, pressure drop, velocity, and many more, all based on the rotation of the geometry.  A transient or time based study is required to use the Rotating Mesh Region.

Application of Rotating Mesh

Application of Rotating Mesh

 

Rotating Mesh Region

Rotating Mesh Region

 

If you have SOLIDWORKS Flow Simulation 2015 already loaded you can find the rotating mesh region under the rotation type “Local regions(s) (Sliding mesh).  Utilize the rotating region boundary condition as usual in the Flow Simulation Design Tree.

Analysis Settings

Analysis Settings

 

For a look at the Rotating Mesh Region please see the following link.

 

Robert Warren

Elite Application Engineer CAE Technical Specialist 3DVision Technologies

2015 Flow Simulation Compare Tool Improvements

Monday, November 24th, 2014

Every new release of Flow Simulation adds more functionality, faster solution times, and customer requested enhancements.  One of the 2015 enhancements is the Study Compare Tool overhaul.  In 2014 a user could compare any active plot and goals between projects in the same model.  This is very useful functionality when comparing between different design options under the same flow conditions.  Only being able to compare active plots lead to some drawbacks and some fumbling for what you actually wanted to see.  The goal plots gave the engineer only a table view of the reported values.  Great for a quick numerical comparison, but this left the user manipulating the data in Excel to get nice visual graphs.

 

This is where 2015 Flow Simulation Compare Tool comes in.  2015 Compare improvements allow the user to directly compare all the generated plots in the project, not just the active one.  If they do not want all the plots they can pick and choose which ones they want to see though a check box interface.  The comparison does not end there, we now can compare XY plots, Tabular Data, and other enhanced chart options.  New to the goal plot is a series of enhanced display options allowing the user to display the goal plot data in bar chart, scatter plot, and over/under displays.

Compare Interface

 

 

Pressure Chart

Bar Chart

 

To access the Flow Simulation Compare Tool, go to Tools>Flow Simulation>Results>Compare, or choose the compare Icon on the Flow Command manager.

Compare Results

Compare Results

 

2015 Flow Simulation Compare Tool enhancements, improve the direct outputs from Flow Simulation,  greatly decrease the time to get to the important data, give the engineer better knowledge of the Project results.  Flow Simulation in 2015 is helping make the user, Better, Faster, and Smarter.

Globe Valve Flow

Robert Warren

Elite Application Engineer CAE Technical Specialist 3DVision Technologies

Duplicate SolidWorks Plastics Project

Tuesday, June 24th, 2014

SolidWorks Simulation allows a user to ‘Duplicate’ a study, and SolidWorks Flow Simulation allows a user to ‘Clone’ a project.  Why not SolidWorks Plastics?  SolidWorks plastics is an injection molding software that allows a user to understand the manufacturability of a plastic part.  Because this is a fully integrated SolidWorks Simulation product different Projects are related to configurations in the part.  To re-use the setup from project to project please follow the instructions in the link below.

Duplicate Plastics Project

This functionality allows a user to quickly duplicate a project to change different parameters and re-run.  If you are currently using SolidWorks Plastics this information will speed up your work flow and Simulation setup times.

Robert Warren

Elite Application Engineer CAE Technical Specialist 3DVision Technologies

Multiple Flow Result Plots in E-Drawings for 2014

Tuesday, April 22nd, 2014

New for 2014, The ability to save multiple result plots in one E-Drawings file.  Previously the result plots needed to be saved in individual E-Drawings files. This caused more files to be generated and shared than need be.

To generate multiple result file plots in one E-Drawings file follow this procedure.

  • Show all plots desired to be included in the E-Drawings file
  • Right Mouse Button on the Results Folder and Select Save Image
EDrawings Save Image

E-Drawings Save Image

  • Choose the E-Drawings File Format
EDrawings Pull Down

E-Drawings Pull Down

Once in E-Drawings you can turn on or off the individual plots as needed to convey the content you wish to show.

Multiple Flow Plots E-Drawings

Multiple Flow Plots E-Drawings

Robert Warren

Elite Application Engineer CAE Technical Specialist 3DVision Technologies

Weldments and Bill of Materials

Wednesday, March 26th, 2014

There are many different ways to create structural frames.  One method might be creating it as an assembly with many individual parts.  Another method, which is my preferred  way, would be as a single multibody part…as a Weldment.
Weldment Icon
The Weldment way allows for easy design changes, automatic structural member trimming/extensions, and creation of cut lengths.  This however is typically just a portion of the overall design.  There might be many more pieces that go on the frame.  This is when you would add your Weldment design to an assembly.

Now with your Weldment in the assembly and the other components attached, you need a Bill of Materials (BOM).  It’s possibly to show the cut list for all the structural members in an assembly BOM.  You will need to choose a BOM Type of Indented in the PropertyManager.

BOM Property Manager
Once you choose the indented type, the BOM will show as a cut list.  The QTY column shows a total length for the structural member.

BOM Image
If you then choose “Detailed cut list” in the BOM Type, it will break each member out in their own row with a length value.

BOM Image Detailed
Now your assembly BOMs can show all the individual items even in the Weldment.  But what if you are using Enterprise PDM.  Can you see the cut list in EPDM?  Of course you can.  It is under the Bill of Materials tab.  You would need to set-up a Weldment Cut List template in EPDM but that is very simple.

EPDM Cut List
As you can see, the cut list item names can be shown to make finding the correct member easy.  Just like in a drawing, you can choose to see a Weldment BOM.

EPDM Weldment BOM
This will group all the members together giving you a total quantity.  If you select the “Contains” tab, and RMB on a Weldment member, you get some more useful functionality.

EPDM Contains Tab
When you choose “Properties”, you can see the members data card with the length.

EPDM Data Card Weldment
You will need to add the length field to the card and map it to the “BOM Quantity” variable.

Josh Spencer

Elite Application Engineer, CSWE 3DVision Technologies

Flow Simulation ‘Replicate Condition’

Thursday, March 20th, 2014

New for 2014 a user has the ability to apply a single Boundary Condition to multiple instances of the same part.  This is a great time saving tip.  No more manually adding the same Boundary Condition to instances of the a part.

With your setup you can assign Boundary Conditions such as an “Inlet”, “Outlet”, and “Heat Source” to  “Part1 “(face/volume) for example.

Simply Right Mouse Button the Boundary Condition and select “Copy to Component Instance”.

The Boundary Condition auto populates on all “Part 1s” in the model.

You can deselect the instance(s) you do not want included.

Note: the “Part 1″ needs to be a part in an assembly for the transfer to work.

For the full pdf instructions please see the link below:

Replicate Condition Flow

Robert Warren

Elite Application Engineer CAE Technical Specialist 3DVision Technologies

Circuit Works and Flow Simulation Working Together

Tuesday, February 25th, 2014

When you think about it, it makes sense that different parts of our SolidWorks Software work together to make a total package.  Keeping in this tradition now in 2014 Circuit Works and Flow Simulation work together to make your life easier.

2014 Flow simulation now imports the Circuit Works component properties and applies them automatically as boundary conditions in your Flow Simulation setup.  Previously these properties would be input manually.  Now we can import ECAD file PCB or Component Thermal Properties to Flow Simulation.

Circuit Board

Circuit Board

Some of the properties that can be directly utilized from Circuit Works are, Dielectric and Conductor Density, Specific Heat, Conductivity for PCBs, and Conductivity for Volumetric Heat Sources.

Circuit Board Thermal Flow

Circuit Board Thermal Flow

Two Import Options:

Right-click Heat Sources and select Import volume source from model. Select the heat sources to import in Item properties.
Right-click Printed Circuit Boards and select Import Printed Circuit Boards from model. Select the PCBs to import in Item properties.

Import Interface

Import Interface

If you are doing Flow Simulation on Electronics Enclosures check out the new Circuit Works import options.  This new feature is a great time saver.  Manually adding these properties on a typical circuit board (100’s of components) is tedious and time consuming.  Circuit Works integration brings this task down to a few simple clicks.

Robert Warren

Elite Application Engineer CAE Technical Specialist 3DVision Technologies

What Can’t You Design In SolidWorks? #3

Tuesday, January 28th, 2014

RC Hovercraft #3 – SolidWorks Simulation

To review, I had 4 main design criteria for the Remote Control Hover Craft.

  • Utilize the SolidWorks and SolidWorks Simulation Suite of software to develop and optimize the hovercraft design.
  • The RC Hovercraft’s main components will be 3D Printed using the Stratasys UPrint.
  • Easy to Assemble. I want to make the assembly as easy and as straight forward as possible with concise instructions.
  • For purchased components, use low cost, off the shelf components including the electric motors, electronic speed control (ESC), batteries, and propellers.

The next step of the design process is to verify using  SolidWorks Flow Simulation  that the motor and propeller combination will provide a proper amount of air flow to lift the hover craft.

Flow Simulation provides an understanding of  flow in an internal or external volume.  Flow Simulation calculates flow with media including Gases, Fluids, Real Gases, and Non Newtonian Fluids.  Flow Rate, Velocity, Pressure , Vortices, and many other parameters are calculated during the solution.

The following  calculation with the provided manufacturer information was used to calculate the flow parameter boundary conditions for the simulation.

CFM = Cubic Feet per Minute = Volumetric Flow Rate

Mass Flow Rate = (Density) x (Volumetric Flow Rate)

Newton’s Second Law of Motion:  Force = (Mass) x (Acceleration), or F = ma

F = ma = (Mass Flow Rate) x (Velocity), given a constant flow velocity

(i.e., constant propeller speed and pitch angle).

Velocity = (Volumetric Flow Rate) / (Area), where Area = (Pi) x (r^2), the

length of a propeller blade is a good approximation for the radius, r.

Thrust = (Density) x (CFM^2) / ((Pi) x (r^2))

Note: Keep track of your units!

The hover craft’s Flow Simulation was approached from an external analysis type.  A volume was specified around the  hover craft to capture flow into the  inlet and out of the bladder, and its effect from the surrounding environment.  A fan was used to provide the draw of air through the inlet into the internals of the hover craft.  Parts of the hover craft were removed including the canopy cover batteries, and escs.  These components are unnecessary for teh flow run and would increase computational time.

 

Air Velocity

Air Velocity

Air Velocity Top

Air Velocity Top

The results from the Flow Simulation run show a symmetric and even outlet pattern of flow from the Hover Craft’s “Bladder”.  The parameters provided by the flow simulation suggest that the motor and propeller combination should be sufficient for lifting the craft.

Robert Warren

Elite Application Engineer CAE Technical Specialist 3DVision Technologies

How to Design a Garage in SolidWorks

Saturday, January 18th, 2014

If you’re into home improvements like I am, it’s that time of the year to start designing your summer projects.  It’s going to be another eventful year at the Tadic household as I plan to have my dream garage/studio built.  This is all possible due to a local vocational school that has offered to build it for only $500 (I will have to pay for all materials).  Normally, I’d be pretty skeptical about a service like this, but fortunately I was able to witness them do an amazing job on a garage a few blocks away.

So, if you’re game to take on a garage construction project this summer, get a kick start on the design with my SolidWorks model that I uploaded to GrabCAD.

garage

If a garage is a bit too much for your summer’s agenda, maybe you could focus on replacing those rickety steps on your porch instead.  This SolidWorks model is equipped with a complete list of comments that can be reviewed with Part Reviewer.  The stairs are fully configurable to any size you may need.  All you have to do is punch in your overall dimensions.

stairs

3DVision Technologies

Your destination for design and manufacturing technology

Follow
Get every new post delivered to your inbox
Join other followers
Powered By WPFruits.com
Bear